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Observations abound about the power of visual imagery in
human intelligence, from how Nobel prize-winning physicists
make their discoveries to how children understand bedtime sto-
ries. These observations raise an important question for cognitive
science, which is, what are the computations taking place in
someone’s mind when they use visual imagery? Answering this
question is not easy and will require much continued research
across the multiple disciplines of cognitive science. Here, we
focus on a related and more circumscribed question from the per-
spective of artificial intelligence (AI): If you have an intelligent
agent that uses visual imagery-based knowledge representations
and reasoning operations, then what kinds of problem solv-
ing might be possible, and how would such problem solving
work? We highlight recent progress in AI toward answering these
questions in the domain of visuospatial reasoning, looking at
a case study of how imagery-based artificial agents can solve
visuospatial intelligence tests. In particular, we first examine sev-
eral variations of imagery-based knowledge representations and
problem-solving strategies that are sufficient for solving prob-
lems from the Raven’s Progressive Matrices intelligence test. We
then look at how artificial agents, instead of being designed
manually by AI researchers, might learn portions of their own
knowledge and reasoning procedures from experience, including
learning visuospatial domain knowledge, learning and generaliz-
ing problem-solving strategies, and learning the actual definition
of the task in the first place.

artificial intelligence | computational modeling | mental imagery | Raven’s
Progressive Matrices | visuospatial reasoning

I think in pictures. Words are like a second language to me. I trans-
late both spoken and written words into full-color movies, complete
with sound, which run like a VCR tape in my head. . .. Language-
based thinkers often find this phenomenon difficult to understand,
but in my job as an equipment designer for the livestock industry,
visual thinking is a tremendous advantage.

Temple Grandin, professor of animal science and
autism advocate (ref. 1, p. 3)

What I am really trying to do is bring birth to clarity, which is really
a . . . thought-out pictorial semivision thing. I would see the jiggle-
jiggle-jiggle or the wiggle of the path. Even now when I talk about the
influence functional, I see the coupling and I take this turn–like as if
there was a big bag of stuff–and try to collect it away and to push it.
It’s all visual. It’s hard to explain.

Richard Feynman, Nobel laureate in physics (ref. 2, p. 244)∗

Temple Grandin is a well-known animal scientist who is on the
autism spectrum. She has had incredible professional success

in the livestock industry, and she credits her success to her strong
visual imagery skills, that is, abilities to generate, transform,
combine, and inspect visual mental representations. (1).

Many physicists such as Richard Feynman (2), Albert Einstein
(3), and James Clerk Maxwell (4) used imagery in their creative
discovery processes, and similar patterns emerge in accounts by
and about mathematicians (5), engineers (6), computer program-

mers (7), product designers (8), surgeons (9), memory champions
(10), and more. People also use visual imagery in everyday activ-
ities such as language comprehension (11), story understanding
(12), and physical (13) and mathematical reasoning (14).

These observations raise an interesting scientific question:
What are the computations taking place in someone’s mind when
they use visual imagery? This is a difficult question that continues
to receive attention across cognitive science disciplines (15).

Here, we focus on a related, more circumscribed question
from the perspective of artificial intelligence (AI): If you have an
intelligent agent that uses visual imagery-based knowledge repre-
sentations and reasoning operations, then what kinds of problem
solving might be possible, and how would it all work?

In this paper, we discuss progress in AI toward answering
this question in the domain of visuospatial reasoning—reasoning
about the geometric and spatial properties of visual objects (16).
This discussion necessarily leaves out such intriguing and impor-
tant complexities as nonvisual forms of spatial reasoning, for
example, in people with visual impairments (17); the role of
physics and forces in imagery (18); imagery in other sensory
modalities (19); etc.

As a case study, we focus on visuospatial reasoning for solv-
ing human intelligence tests like Raven’s Progressive Matrices.
While many AI techniques have been developed to solve many
different tests (20), we are still quite far from having an artificial
agent that can “sit down and take” an intelligence test without
specialized algorithms having been designed for that purpose.
Contributions of this paper include discussions of 1) why intel-
ligence tests are such a good challenge for AI; 2) a framework
for artificial problem-solving agents with four components: a
problem definition, input processing, domain knowledge, and a
problem-solving strategy or procedure; 3) several imagery-based
agents that solve Raven’s problems; and 4) how an imagery-
based agent could learn its domain knowledge, problem-solving
strategies, and problem definition/input processing components,
instead of each being manually designed.

Why the Raven’s Test Is (Still!) a Hard AI Challenge
Take a look at the problems in Fig. 1. Can you solve them?
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Fig. 1. Sample problems like those from the Raven’s intelligence test, com-
parable to ones of easy-to-middling difficulty on the standard version of
the test.

While these problems may seem straightforward, consider for
a moment the complexity of what you just did. As you were
solving each problem, some executive control system in your
mind was planning and executing a series of physical and cog-
nitive operations, including shifts of gaze from one element of
the problem to another, storing extracted features in working
memory, computing and storing the results of intermediate cal-
culations, and so on. And, you did all of this without any explicit
instructions as to what cognitive operations to use, or in what
order to apply them.

At a deeper level, you may notice that no one actually even
told you what these problems were about. Typically, Raven’s test-
takers are instructed to solve each problem by selecting the answer
from the bottom that best completes the matrix portion on top
(21). However, even if you hadn’t seen problems quite like these
before, it is likely that you were able to grok the point of the prob-
lems just by looking at them, no doubt due to a lifetime of expe-
rience with pattern-matching games and multiple choice tests.

FromageneralAIperspective, intelligencetests liketheRaven’s
havebeen“solved”inthesensethatwedohavecomputationalpro-
grams that, given a Raven’s problem as input, can often produce
the correct answer as an output. In fact, some of the earliest work
in AI was Evans’ classic ANALOGY program from the 1960s—at
the time, the largest program written in LISP to date!—that solved
geometric analogy problems from college aptitude tests (22).

However, all of these programs have essentially been hand-
crafted to solve Raven’s problems in one way or another.
Humans (at least in theory) are supposed to take intelligence
tests without having practiced them beforehand. Thus, intelli-
gence tests like the Raven’s are still an “unsolved” challenge
for AI when treated as tests of generalization, that is, general-
izing previously learned knowledge and skills to solve new and
unfamiliar types of problems.

At an even higher level, the notion of “taking a test” is itself a
sophisticated social and cultural construct. In people, for exam-
ple, crucial research on stereotype threat has observed how
stereotypes about race and gender can influence a person’s per-
formance on the exact same test depending on whether they are
told it is a “test” or a “puzzle” (23). If we assume that human cog-
nition can be explained in computational terms, then, someday,
we ought to be able to have AI agents that model these effects.∗

*Perhaps ironically, early AI research studied what we thought were the hard problems,
like taking tests and playing chess. The next wave of research recognized that the real
hard problems were, in fact, the ones that were easy for many people, like walking
around or recognizing cats (24). Now, we are realizing that the original hard problems
of taking tests and playing chess are quite hard after all—but only if you really consider
the full work of the agent, which includes figuring out what to do and understanding
why you are doing this thing in the first place. In other words, many animals can walk
around and pick up rocks, but only humans play good chess and take difficult tests.

The Raven’s test and similar tests of matrix reasoning and
geometric analogy are particularly interesting for AI for several
reasons. First, the Raven’s test, originally designed to measure
“eductive ability,” or the ability to extract and understand infor-
mation from a complex situation (21), occupies a unique niche
among psychometric instruments as being the best single-format
measure of a person’s general intelligence (25). In other words,
the Raven’s test seems to tap into fundamental cognitive abilities
that are very relevant to many other things a person tries to do.

Second, there are several Raven’s tests that span a very wide
range of difficulty levels, from problems that are easy for young
children to problems that are difficult for most adults. The devel-
opmental trajectories of performance that people show offer
a motivating parallel for studying AI agents that meaningfully
improve their problem-solving abilities through various learning
experiences.

Third, there is evidence that many people use multiple forms
of mental representation while solving Raven’s problems, includ-
ing inner language as well as visual imagery (26, 27). Interest-
ingly, many people on the autism spectrum show patterns of
performance on the Raven’s test that do not match patterns seen
in neurotypical individuals (28), and neuroimaging findings sug-
gest that many individuals on the spectrum rely more on visual
brain regions than neurotypicals do while solving the test (29).
Thus, the Raven’s test is a fascinating testbed for AI research
on visual imagery in particular and multimodal reasoning more
generally.

A Framework for Artificial Agents That Solve Problems
Many approaches in AI can usefully be decomposed according
to the framework shown in Fig. 2. The agent is given a problem
as input and is expected to produce a correct solution as output.

The “problem definition” refers to the agent’s understanding
of what the problem is actually asking, that is, what constitutes
a valid format of inputs and outputs (“problem template”) and
what the goal is in terms of desired outputs (“solution criteria”).
For example, for a generic Raven’s problem, the problem tem-
plate might specify a two-dimensional matrix M of images mi ,
with one entry in the matrix missing, and an unordered set A
of answer images ai , and that a valid answer consists of select-
ing one (and only one) answer ai ∈A. The solution criterion is
that the selected answer should be the one that “best fits” in the
missing slot in M .

The “input processing” component refers to how an agent
takes raw or unstructured inputs from the “world” and converts
them into a usable internal problem representation. For exam-
ple, what the Raven’s test actually provides is a pattern of ink
on paper. At some point, this visual image needs to be decom-
posed into the matrix M and answer choice A elements in the
problem template. For many artificial agents, input processing is
performed outside the agent, either manually or by some other
system. For example, most chess-playing agents do not operate
using a video feed of a chess board, but rather using an explicit
specification of where all of the pieces are on the board. While

Fig. 2. Framework for artificial agents. Pushing the boundaries of what
artificial agents can do often involves deriving more and more of the inter-
nal structure and knowledge of the agent through learning instead of
programming.
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this is a reasonable assumption to make in many AI applications,
it does mean that the agent relies on having a simplified and
preprocessed set of inputs.

“Domain knowledge” refers to whatever knowledge an agent
needs to solve the given type of problems. The Raven’s test
can be tackled using visuospatial knowledge about symmetry,
sequential geometric patterns, rows and columns, etc.

Finally, the “problem-solving strategy” encompasses what the
agent actually does to solve a given problem, that is, the algo-
rithm that churns over the problem definition, domain knowl-
edge, and specific problem inputs in order to generate an
answer.

Given this framework, what would it mean for an agent to
use visual imagery to solve problems? We offer one formu-
lation: Anywhere beyond the input processing step, the agent
needs to use or retain representations of problem information
that count as “images” in some way. This includes image-like
representations occurring in the problem definition, domain
knowledge, problem-solving strategy, and/or the specific problem
representations generated by the input processing component.

What counts as an image-like representation? Previous
research on computational imagery often distinguishes between
spatial representations, that is, those that replicate the spatial
structure of what is being represented, versus visual/object rep-
resentations, that is, those that replicate the visual appearance
of what is being represented (30). These categories correspond
to findings about spatial versus object imagery in people (31).
Thus, we label agents using either type of representation as
using visual imagery or being imagery based. The imagery-
based Raven’s agents discussed later in this paper primarily use
visual/object imagery and not spatial imagery, although, cer-
tainly, many other AI research efforts have developed agents that
use spatial imagery (32).

Note that imagery here refers to the format in which some-
thing is represented, not the contents of what is represented.
Many artificial agents reason about visuospatial information
using nonimagery-based representations (33); for example, visu-
ospatial domain knowledge can be encoded propositionally, such
as the rule left-of (x,y) =⇒ right-of (y,x).

Different Types of Raven’s Problem-Solving Agents
Different paradigms of AI agents can now be described accord-
ing to components in this framework.

Knowledge-based approaches, also associated with terms like
cognitive systems (34) or symbolic AI, traditionally rely on man-
ually designed domain knowledge and flexible problem-solving
procedures like planning and search to tackle complex problems.
The first wave of “propositional Raven’s agents” used man-
ual or automated input processing to convert raw test problem
images into amodal, propositional representations, such as lists
of attribute–value pairs, and then problem-solving procedures
would operate over these propositional representations (33, 35–
37). Visuospatial domain knowledge in these agents included
predefined types of relationships among elements, like similar-
ity or containment, and methods for extracting and defining
relationships.

As foreshadowed in early writings about possible representa-
tional and algorithmic strategy differences on the Raven’s test
(38), a second wave of “imagery-based Raven’s agents” were
also knowledge-based, but their internal representations of prob-
lem information remained visual, that is, the problem-solving
procedures directly accessed and manipulated problem images,
and even often created new images during the course of rea-
soning (39–43). Visuospatial domain knowledge in these agents
included image functions like rotation, image composition, visual
similarity, etc.

More recently, a wave of “data-driven Raven’s agents” aims to
learn integrated representations of visuospatial domain knowl-

edge and problem-solving strategies by training on input–output
pairs from a large number of example problems (44–49).

Which approach is correct? This is a bad question, as differ-
ent types of agents are used for very different lines of scientific
inquiry. Referring again to Fig. 2, most knowledge-based Raven’s
agents are used to study problem-solving procedures and assume
a relatively fixed set of domain knowledge (although some of
these agents certainly include forms of learning as well). Most
of the data-driven Raven’s agents are used to study how domain
knowledge about visuospatial relationships can be learned from
examples, and the problem-solving procedure is often (although
not always) fixed.

All of these Raven’s agents have many hand-built compo-
nents, although the parts that are hand-built differ from one
agent to another. Many open AI challenges remain, even within
the one task domain of the Raven’s test, to gradually convert
the components in Fig. 2 from being manually programmed
to being learned or developed by the agents themselves. Next,
we discuss how knowledge-based agents can use imagery to
solve Raven’s problems in several different ways, and then we
examine emerging methods for agents to learn their own 1)
domain knowledge, 2) problem-solving strategies, and, finally, 3)
problem definitions.

Imagery-Based Strategies for Solving Raven’s Problems
Within the category of imagery-based Raven’s agents, many dif-
ferent formulations are possible, in terms of the problem-solving
strategy that is used, the representation and contents of domain
knowledge, and even the problem definition.

We describe five imagery-based strategies along with results
from research by the author and colleagues. Results are reported
for the Raven’s Standard Progressive Matrices test, scored
out of 60 problems (21). For comparison, human norm data
suggest that average children in the United States would
score around 26/60 as 8-y-olds, 40/60 as 12-y-olds, and 49/60
as 16-y-olds.

At a high level, the following strategies are described in
terms of two strategy types observed in psychology research
(50):In “constructive matching,” the test-taker looks at the prob-
lem matrix, generates a guess for the missing element, and
then chooses an answer most similar to its generated guess. In
“response elimination,” the test-taker looks at each answer in
turn, plugging it into the problem matrix, and choosing the one
that produces the best overall matrix.

Strategy 1 (Fig. 3A ). We developed an imagery-based agent that
solves Raven’s problems through multistep search, using a con-
structive matching strategy (39, 43, 51): 1) Using elements from
complete rows/columns of the matrix, search among known
visual transformations for the one that best explains image
variation across parallel rows/columns. 2) Apply this transfor-
mation to elements in a partial row or column to predict
a new answer image. 3) Search among the answer choices
to find the one that is most similar to the predicted answer
image.

More formally, problem inputs include a set M of images
mi representing sections of the problem matrix, and a set A
of answer choice images ai . Let C be the set of all collinear
subsets c of M , with cx referring to the first element(s), and
cy referring to the last element. Each c contains matrix ele-
ments along rows, columns, or diagonals. We define an analogy
g as a pairing of a single complete collinear subset c1 with
an incomplete collinear subset c2 (i.e., g = [c1.x : c1.y :: c2.x :
c2.y ], where c2.y is the missing element in the matrix). All
such analogies that share the same c2 are further aggregated
into sets Gi ∈G .

In addition, let T be the agent’s predefined set of visual trans-
formations. Also, let sim(I1, I2) be a function that returns a

29392 | www.pnas.org/cgi/doi/10.1073/pnas.1912335117 Kunda

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

N
ov

em
be

r 
25

, 2
02

0 

https://www.pnas.org/cgi/doi/10.1073/pnas.1912335117


CO
LL

O
Q

U
IU

M
PA

PE
R

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S
CO

M
PU

TE
R

SC
IE

N
CE

S

A B C D

Fig. 3. Raven’s-like problem and four different imagery-based strategies for solving it. A problem consists of matrix M of elements mi and set A of answer
choices ai . (A) First strategy begins with search for transformation t that best transforms m1 into m2, then applies t to m3 to produce an image candidate for
m4, and finally searches for answer ai most similar to m4. (B) Second strategy also begins with search for t that best transforms m1 into m2, then conducts
similar searches for transformations tai that transform m3 into each ai , and finally searches for answer ai that yields tai most similar to t. (C) Third strategy
begins with search for image m4 that maximizes Gestalt metric for matrix M, and then searches for answer ai most similar to m4. (D) Fourth strategy involves
search for answer ai that maximizes Gestalt metric for matrix M.

real-valued measure of similarity between images I1 and I2. First,
the agent finds the best-fit transformation,

(tmax, gmax)= argmax
t∈T ,Gi∈G

(
mean
g∈Gi

(sim (t(g .c1.x ), g .c1.y))

)
,

Second, the agent computes a predicted answer image as apred =
tmax(gmax.c2.x ). Third, the agent returns the most similar answer
choice: afinal = argmaxai∈A (sim(apred, ai)). Hand-coded domain
knowledge is provided in the form of the set T of visual
transformations, including eight rectilinear rotations and reflec-
tions (including identity) and three to six image composition
operations (union, intersection, subtraction, and combinations
of these) as well as visual similarity and other image pro-
cessing utility functions. Steps 1 and 3 above used exhaustive
search.

Successive versions of the agent, using more transformations
T and more varied ways to optimize over matrix entries in step
1, have achieved scores of 38/60 (39), 50/60 (51), and 57/60 (43)
on the Raven’s Standard Progressive Matrices test.

Strategy 2 (Fig. 3B ). In a related line of research, colleagues devel-
oped a different imagery-based agent that adopted a response
elimination type of strategy (Fig. 3B). In this work (40), a smaller
set of visual transformations (rotation and reflection) was used
to compute “fractal image transformations,” that is, a represen-
tation of one image in terms of another, using techniques from
image compression (52).

In particular, to compute a fractal transformation between
source image A and target image B , B is first partitioned into
a set of subimages bi . Then, for each bi , a fragment ai ∈A is
found such that bi can be expressed as an affine transformation
ti of ai . The fragments ai are twice the size of bi , resulting in
a contractive transformations. The set T of all ti is the fractal
transformation of A into B .

To solve a Raven’s problem, a fractal transformation T is
computed using elements from each complete row/column j
in the matrix, and then similar transformations T ′ij are com-
puted for each of the answer choices plugged into the incom-
plete rows/columns of the matrix. Finally, the selected answer
is the one yielding the fractal transformations most similar to
those computed for the original rows/columns of the matrix.
Formally, if we let Tsim be a similarity metric across fractal
transformations, the final answer is given by

afinal = argmax
ai∈A

√∑
j

Tsim(Tj ,T ′ij )
2.

Results using this fractal method were also 50 out of 60 cor-
rect on the Raven’s Standard Progressive Matrices test, allow-
ing for some ambiguous detections of the answers, or 38
out of 60 correct with a specific method for resolving these
ambiguities (40).

Strategy 3 (Fig. 3C ). The first two strategies consider each matrix
element individually. However, people can also use a “Gestalt”
strategy to consider the entire matrix as a whole (38, 53). For
instance, for the problem in Fig. 3, if one looks at the matrix as a
single image, an answer might just “appear” in the blank.

In recent work (42), we attempted to model this kind of strat-
egy using neural networks for image inpainting, trained to fill
in the missing portions of real photographs. We used a recently
published image inpainting network consisting of a variational
autoencoder combined with a generative adversarial network
(54), and we tested several versions of the network trained on
different types of photographs, such as objects, faces, scenes,
and textures. Given an image of the incomplete problem matrix,
the network outputs a guess for what image should fill in the
missing portion. This guess is then used to select the most
similar answer.

Formally, let F be the learned encoder network that converts
an image into a representation in a learned feature space, and let
G be the learned decoder network that converts a feature-based
image back into pixel space, including inpainting to fill in any
missing portions. Then, our agent first computes M ′=G(F (M ))
to obtain a new, filled-in matrix image, with mx denoting the new,
filled-in portion of M ′. Let L2dist represents the L2 norm of a
vector in the learned feature space. Then, the final answer is

afinal = argmin
ai∈A

(L2dist (F (mx )−F (ai))).

Fig. 4 shows examples of inpainting results on several example
problems, some of which are filled in more effectively than oth-
ers. The best version of this agent, trained on photographs of
objects, answered 25 out of 60 problems on the Raven’s Stan-
dard Progressive Matrices test. While this score may seem low,
it is quite astonishing given that there was no Raven’s-specific
information fed into or contained in the inpainting network, and,
in fact, the network had never before “seen” line drawings, only
photographs.

Strategy 4 (Fig. 3D ). The fourth strategy combines a Gestalt
approach with response elimination. We have not yet imple-
mented this strategy, nor do we know of other AI efforts that
have, but we present a brief sketch here. Essentially, this strategy
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Fig. 4. Images generated using an inpainting neural network (54) for
Raven’s-like problems (42). The network was trained only on real-world
photographs of objects.

works by plugging in answers to the matrix, and choosing the one
that creates the “best” overall picture, for some notion of best.

Assume a Gestalt metric S that measures the Gestalt quality
of any given image. Images that are highly symmetric, con-
tain coherent objects, etc., would score highly, and images that
are chaotic or broken up would score poorly. Then, the agent
chooses the answer that scores highest when plugged into the
matrix M ,

afinal = argmax
ai∈A

(S(M ∪ ai)).

Strategy 5 (Not Shown in Figure). The above four strategies treat
Raven’s matrix elements as single images. However, previ-
ous computational and human studies have suggested that it
can be helpful to decompose Raven’s problems into multi-
ple subproblems, by breaking up a single matrix element into
subcomponents (35).

In previous work, we have also explored imagery-based tech-
niques for decomposing a geometric analogy into subproblems,
solving each separately, and then reassembling the subsolutions
back together to choose the final answer (55), although this
method has not yet been tested on the actual Raven’s tests.

Open Questions. From this small survey, it is clear that there is
no single imagery-based Raven’s strategy. Imagery-based agents
are like logic-based agents or neural network-based agents; there
are a set of generally shared principles of representation and rea-
soning, but then individual agents are designed to use specific
instantiations of these and combine them in different ways to
produce very diverse problem-solving behaviors.

Exploring the space of imagery-based agents is valuable, not
to find the “best” one but rather to characterize the space itself.
Each agent, as a data point in this space of possible agents, is
an artifact that can be studied in order to understand something
about how that particular set of representations and strategies
can produce intelligent task behaviors (56). Future work should
continue to add data points to this space and also investigate
the extent to which these strategies overlap with human problem
solving.

Learning Visuospatial Domain Knowledge
Imagery-based agents use many kinds of visuospatial domain
knowledge, including visual transformations like rotation, scal-
ing, and composition; hierarchical representations of concepts
in terms of attributes like shape and texture; Gestalt princi-
ples like symmetry, continuity, and similarity; etc. These types
of knowledge can be leveraged by an agent to solve prob-
lems from the Raven’s test as well as many other visuospatial
tests (32).

Visuospatial domain knowledge also includes more semanti-
cally rich information such as what kinds of objects go where
in a scene (57); we do not further discuss this type of semantic
knowledge here, although it certainly plays an important role in

imagery-based AI, especially for agents that perform language
understanding or commonsense reasoning tasks (32).

How is visuospatial domain knowledge learned? One hypoth-
esis suggests that agents learn such knowledge through prior
sensorimotor interactions with the world. Under this view,
the precise nature of the representations and learning mech-
anisms involved are important open questions. For brevity,
we discuss here AI research on learning two types of visu-
ospatial domain knowledge—visual transformations and Gestalt
principles.

Learning Visual Transformations. In humans, many reasoning
operators used during visual imagery (e.g., transformations like
mental rotation, scaling, etc.) are hypothesized to be learned
from visuomotor experience, for example, perceiving the move-
ment of physical objects in the real world (58). As with
the well-known kittens-in-carousel experiments (59), learning
visual transformations may rely on the combination of active
motor actions coupled with visual perception of the results of
those actions. Studies in both children and adults have indeed
found that training on a manual rotation task does improve
performance on mental rotation (60, 61).

Computational efforts to model the learning of visual trans-
formations have generally represented each transformation as a
set of weights in a neural network. In early work, distinct net-
works were used to learn each transformation individually (62).
More recent work combines the visual and motor components
of inputs for learning mental rotation (63). While many of these
approaches implement visual transformations as distinct oper-
ations, a more general approach might represent continuous
visual operations as combinations of basis functions that can be
combined in arbitrary ways (64). Along these lines, other recent
work uses more complex neural networks to represent transfor-
mations as combinations of multiple learned factors, although
this work still focused on relatively simple transformations like
rotation and scaling (65, 66).

People certainly do not learn visual transformations from spe-
cialized training on rotation, scaling, etc., taken as separate
transformations. More generally, we have access to a very robust
and diverse machinery for simulating visual change, and the sim-
ple “mental rotation” types of tasks often used in studies of visual
imagery tap into only very tiny slices of this knowledge base. In
line with evidence of the importance of motor actions and forces
on our own imagery abilities (18), we expect that work in AI
to model physical transformations—especially work in robotics
that combines visual and motor inputs/outputs—will be essen-
tial for producing the kinds of capabilities agents need for visual
imagery.

There is starting to be a wave of relevant work in AI in the
area of “video prediction,” which involves learning represen-
tations of the appearance of objects as well as their dynamics
(67–69), including for increasingly complex forms of dynamics,
as with a robot trying to manipulate a rope (70). Importantly,
these efforts focus on learning and making inferences about
object dynamics directly in the image space, as opposed to
computational approaches that rely on explicit physics simula-
tions and then project predictions into image space. Thus, these
new approaches offer intriguing possibilities as potential mod-
els for how humans might learn naive physics as a form of
imagery-based reasoning.

Learning Gestalt Principles. Many visuospatial intelligence tests
rely on a person’s knowledge of visual relationships like similar-
ity, continuity, symmetry, etc. Simple tests like shape matching
require the test-taker to infer first-order relationships among
visual elements, while more complex tests like the Raven’s often
progress into second-order relationships, that is, relations over
relations.
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In one sense, a test like the Raven’s ought to be agnostic
with respect to the specific choice of first-order relationships,
and, indeed, in many propositional AI agents, a relation like
CONTAINS(X, Y) can be replaced with any arbitrary label,
and the results will stay the same. However, for people, the
actual visuospatial relationships at play do deeply influence
our problem-solving capabilities. For example, isomorphs of the
Tower of Hanoi task are more difficult if task rules are less
well aligned with our real-world knowledge about spatial struc-
ture and stacking (71). Similarly, the perceptual properties of
Raven’s problems have been found to be a strong predictor of
item difficulty (72).

A person’s prior knowledge about visuospatial relationships
is closely tied to Gestalt perceptual phenomena. In humans,
Gestalt phenomena have to do, in part, with how we inte-
grate low-level perceptual elements into coherent, higher-level
wholes (73), as shown in Fig. 5. Psychology research has enumer-
ated a list of principles (or laws, perceptual/reasoning processes,
etc.) that seem to operate in human perception, like prefer-
ences for closure, symmetry, etc. (74). Likewise, work in image
processing and computer vision has attempted to define these
principles mathematically or computationally, for instance, as a
set of rules (75).

However, in more recent computational models, Gestalt prin-
ciples are seen as emergent properties that reflect, rather than
determine, perceptions of structure in an agent’s visual environ-
ment. For example, early approaches to image inpainting—that
is, reconstructing a missing/degraded part of an image—used
rule-like principles to determine the structure of missing con-
tent, while later approaches use machine learning to capture
structural regularities from data and apply them to new images
(76). This seems reasonable as a model of Gestalt phenomena
in human cognition; it is because of our years of experience
with the world around us that we see Fig. 5, Left as partially
occluded/degraded views of whole objects.

Image inpainting represents a fascinating area of imagery-
based abilities for artificial agents (54), which we used in our
model of Gestalt-type problem solving on the Raven’s test (42),
as described earlier. Other work in computer vision and machine
learning studies the extent to which neural networks not explic-
itly designed to model Gestalt effects might exhibit such effects
as emergent phenomena (77–81).

Learning a Problem-Solving Strategy
Relatively little research in AI has proposed methods for auto-
matically generating problem-solving procedures for intelligence
tests, despite the extensive research on manually constructed
solution methods or methods that rely on a large number of
examples (20). How does a person obtain an effective problem-
solving strategy for a task they have never seen, on the fly and
often without explicit feedback? Some human research suggests
that children learn to solve a widening range of problems through
two primary processes of 1) “strategy discovery,” that is, dis-
covering new strategies for certain problems or tasks, and 2)
“strategy generalization,” that is, adapting strategies they already
know for other problems or tasks (82, 83).

Fig. 5. Images eliciting Gestalt “completion” phenomena. Left contains
only scattered line segments, but we inescapably see a circle and rectangle.
Right contains one whole key and one broken key, but we see two whole
keys with occlusion.

Some AI research on strategy discovery can be found in the
area of inductive programming or program synthesis; that is,
given a number of input–output pairs, constraints, or other par-
tial specifications of a task, together with a set of available
operations, the system induces a “program” or series of opera-
tions that produces the desired behaviors (84). In other words,
“Inductive programming can be seen as a very special subdo-
main of machine learning where the hypothesis space consists of
classes of computer programs” (85). Inductive programming has
been applied to some intelligence test-like tasks, such as num-
ber series problems (86), and to simple visual tasks like learning
visual concepts (87, 88). However, more research is needed to
expand these methods to tackle more complex and diverse sets of
tasks. For example, given the imagery-based strategies described
above, a challenge for imagery-based program induction would
be to derive these strategies automatically from a small set of
example Raven’s problems.

AI research has often investigated strategy generalization
through the lens of integrating planning with analogy. Case-
based planning looks at how plans stored in memory are
retrieved at the appropriate juncture, modified, and applied
to solve a new problem (89). The majority of this work has
focused on agents that use propositional knowledge representa-
tions, and very little (if any) has applied these methods to address
intelligence tests.

Research on strategy selection and adaptation would be enor-
mously informative for studying not just how people approach a
new type of intelligence test but also interproblem learning on
intelligence tests, that is, learning from one problem (even with-
out feedback) and using this knowledge to inform the solution
of the next problem. In humans, one fascinating study gave each
of two groups of children a different set of Raven’s-like prob-
lems to start with, and then the same final set of problems that
had ambiguous answers (53). Depending on which set of start-
ing problems they received, the children predictably gravitated
toward one of two profiles of performance on the final problems.
Modeling these phenomena remains an open challenge for AI
research.

Learning the Problem Definition
Even with intelligent agents that generate their own problem-
solving strategies or programs, the problem definition—that is,
the problem template and goal—is still provided by the human
system designer. Interactive task learning is an area of AI
research that investigates how “an agent actively tries to learn
the actual definition of a task through natural interaction with
a human instructor, not just how to perform a task better” (90).
Research in interactive task learning generally involves design-
ing agents or robots that learn from both verbal and nonverbal
information, that is, instructions along with examples or situated
experiences (91, 92).

Such multimodal inputs are used all of the time in human
learning, including on intelligence tests: Most tests combine
verbal (spoken or written) instructions with simple example
problems to teach the test-taker the point of each new task that
is presented. For example, the Raven’s test typically begins with
spoken instructions to select the answer choice that best fills in
the matrix, together with a very simple example problem that the
test administrator is supposed to show the test-taker, along with
the correct answer.

Any Raven’s agent must contain information about the prob-
lem definition in order to parse new problems appropriately
and to follow a procedure that attains the goal. Moreover,
agents should be able to modify their problem definition to
accommodate slight problem variations. For example, if a new
problem is presented with two empty spots in the matrix, a robust
agent should be able to infer that this problem requires two
corresponding answer responses.
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In all extant Raven’s agents, knowledge of the problem def-
inition is manually provided by system designers. While these
concepts may seem straightforward to a person, and indeed are
usually trivial to program into an agent as static program ele-
ments, it is a challenging open question to consider where these
concepts come from, and how they might be learned. For exam-
ple, people gain extensive experience in taking multiple choice
tests from a very early age, especially in modern societies, but we
do not know precisely how this knowledge is represented, or the
mechanisms by which it is generalized to new tasks.

The interesting subproblem of “nonverbal task learning” con-
siders how the task definition can be learned purely through a
small number of observed examples, without the use of explicit
language-based information at all (93). While nonverbal mech-
anisms are undoubtedly at play in multimodal task learning for
most people, nonverbal task learning in its pure form does also
occur.

There are many clinical populations in which individuals
have difficulties in using or understanding language, including
acquired aphasias or developmental language disorders. Nonver-
bal intelligence tests are specifically designed for use with such
populations, and they avoid verbal instructions altogether (94).
In these tests, examiners initially show test-takers a simple exam-
ple problem and its solution. Test-takers must learn the task
definition (e.g., matching shapes, finding one shape in another,
completing a visual pattern, etc.) by observing the example, and
then use this knowledge to solve a series of more difficult test
problems.

A small but intriguing set of converging research threads in
AI have pinpointed the importance of nonverbal task learning.
One recent study using robots looked at how abstract goals can
be inferred from a small number of visual problem examples and
applied to new problems, where the goal is represented in terms
of a set of programs that meets it (95). Even more recently, a
new Abstraction and Reasoning Corpus has been proposed for
artificial agents, containing 1,000 visual tasks with distinct goals;
agents must infer the goal for a given task from a few examples
and then use this knowledge to solve new problems (96). Both
of these tasks are similar to the Raven’s test in the sense that,
even though the Raven’s test ostensibly only has a single goal
(i.e., choose the answer that fits best), different Raven’s prob-
lems can be thought of as requiring different formulations of
this overarching and extremely vague goal. These examples also
pose interesting questions about the extent to which problem
goals might be implicitly represented within an agent’s problem-
solving strategy, instead of explicitly, and the pros and cons of
each alternative.

Note that this discussion only considers goals that are well
defined, at least in the minds of the problem creators. Intel-
ligence tests are a rather odd social construct for this reason;
in a way, the test-taker is trying to infer the intent of the test
designer. How agents (or humans) represent and reason about
their own goals might involve an extension of the processes
described here, or they might be different modes of reasoning
altogether.

Conclusion and Implications for Cognitive Science
We close by returning to the motivating questions from the
Introduction. The cognitive science question is, what are the
computations taking place in someone’s mind when they use
visual imagery?

AI research alone cannot, of course, fully answer this ques-
tion, and so we presented a second, more limited question: If you
have an intelligent agent that uses visual imagery-based knowl-
edge representations and reasoning operations, then what kinds
of problem solving might be possible, and how would it all work?

In this paper, we have presented a review of AI research
and open lines of inquiry related to answering this question
in the context of imagery-based agents that solve problems
from the Raven’s Progressive Matrices intelligence test. We
discussed 1) why intelligence tests are such a good challenge
for AI; 2) a framework for artificial problem-solving agents;
3) several imagery-based agents that solve Raven’s problems;
and 4) how an imagery-based agent could learn its domain
knowledge, problem-solving strategies, and problem definition,
instead of these components being manually designed and
programmed.

More generally, whether or not imagery-based AI agents are
at all similar to humans, designing, implementing, and studying
such agents contributes valuable information about what is pos-
sible in terms of computation and intelligence. AI research that
develops different kinds of agents is helpful for sketching out dif-
ferent points in the space of what is possible, and AI research
that enables such agents to learn is helpful for hypothesizing how
and why various computational elements of intelligence might
come to be. Then, further interdisciplinary inquiries can pro-
ceed to connect findings and hypotheses derived from these lines
of AI research to corresponding lines of research about what
humans do.
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