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This article investigates whether, and how, an artificial intelligence (AI) system can be said

to use visual, imagery-based representations in a way that is analogous to the use of visual

mental imagery by people. In particular, this article aims to answer two fundamental

questions about imagery-based AI systems. First, what might visual imagery look like in an

AI system, in terms of the internal representations used by the system to store and reason

about knowledge? Second, what kinds of intelligent tasks would an imagery-based AI

system be able to accomplish? The first question is answered by providing a working

definition of what constitutes an imagery-based knowledge representation, and the second

question is answered through a literature survey of imagery-based AI systems that have

been developed over the past several decades of AI research, spanning task domains of: 1)

template-based visual search; 2) spatial and diagrammatic reasoning; 3) geometric analo-

gies and matrix reasoning; 4) naive physics; and 5) commonsense reasoning for question

answering. This article concludes by discussing three important open research questions

in the study of visual-imagery-based AI systemsdon evaluating system performance,

learning imagery operators, and representing abstract conceptsdand their implications for

understanding human visual mental imagery.

© 2018 Elsevier Ltd. All rights reserved.
in a digital computer is just ones and zeros, but that is a bit like

1. Introduction

“I've seen things you people wouldn't believe. Attack ships on fire

off the shoulder of Orion. I watched C-beams glitter in the dark

near the Tannh€auser Gate. All those moments will be lost in time,

like tears in rain.”

e Roy Batty, a replicant

Blade Runner

What is the inner, “mental” life of an artificial intelligence

(AI) system? At its most basic level, it is true that information
rved.
saying that information in the human mind is all just spiking

neurons. Humans employ a rich variety of mental represen-

tations, ranging from sensory impressions to linguistic sym-

bols, that each can be studied at many different levels of

abstraction, e.g., as in Marr's levels of analysis (Marr, 1982).

And, while some general, low-level principles of operation are

shared across different neurons, there is also extensive bio-

logical and developmental specialization within the inte-

grated brainebody system that produces very different types

of mental representations for different tasks, situations, and

sensory modalities.
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This article investigates whether, and how, an AI system

can be said to use visual, imagery-based knowledge representa-

tions in a way that is analogous to the use of visual mental im-

agery by peopledi.e., using visual, image-like representations

to store knowledge, and image-based operations like trans-

lation, rotation, and composition to reason about that

knowledge in some useful way.

While the existence of visual mental imagery in human

cognition was vigorously debated for much of the late 20th

century (aptly named “The Imagery Debate”), many conver-

gent findings in neuroscience now support the idea that visual

mental imagery is a genuine and useful form of mental rep-

resentation in humans (Pearson & Kosslyn, 2015). Visual

mental images are represented in many of the same reti-

notopic brain regions that are responsible for visual percep-

tion, with the key difference that mental images involve

neural activations that are not directly tied to concurrent

perceptual inputs (Kosslyn et al., 1995; Slotnick, Thompson, &

Kosslyn, 2005). In addition, the neural activity associated with

visual mental imagery has been found to play a functional

role: if this neural activity is artificially suppressed, then a

person's performance on certain tasks will decrease (Kosslyn

et al., 1999).

A person's use of visual mental imagery is also associated

with certain behavioral characteristics whose study formed

much of the early seminal work on this topic in psychology.

For example, performing mental rotations of an arbitrary

image takes an amount of time that is proportional to the

angle through which the rotation is applied, as demonstrated

by studies of the now-classic mental rotation task (Shepard &

Metzler, 1971).

In addition, numerous narrative, often introspective ac-

counts of human intelligence have identified visual mental

imagery as playing a crucial role in many different task do-

mains, includingmedical surgery (Luursema, Verwey,& Burie,

2012), mathematics (Giaquinto, 2007), engineering design

(Ferguson, 1994), computer programming (Petre & Blackwell,

1999), creativity (Miller, 2012), and scientific discovery

(Nersessian, 2008). Temple Grandin, a professor of animal

science who also happens to be on the autism spectrum,

identifies her tendency to “think in pictures” as a contributor

both to her strengths as a designer of complex equipment for

the livestock industry as well as to her weaknesses in under-

standing abstract concepts and communicating with other

people (Grandin, 2008). Individuals seem to vary in their abil-

ities to use visual mental imagery from the strong abilities

often observed in autism (Kunda & Goel, 2011) to the apparent

lack of imagery ability recently characterized as aphantasia

(Zeman, Dewar, & Della Sala, 2015).

However, despite the breadth of studies from neurosci-

ence, psychology, and other disciplines, much is still un-

known about the cognitive machinery that drives visual

mental imagery in humans, such as how mental images are

stored in and retrieved from long termmemory, how they are

manipulated, and how they support intelligent behavior in

various real-world task domains. As with research on other

aspects of cognition, the study of visual mental imagery is

challenging becausemental representations and the cognitive

processes that use them are not directly observable. We can

use neuroimaging to study what happens in the brain, and we
can measure behavior to study what happens externally, but

the nature of the mental representations themselves can only

be inferred indirectly, through these other approaches.

In contrast, the knowledge representations used by an AI

system are completely observable. One has only to look up the

system's code and inputs, and inspect the state of the system

during its operation, to know exactly what knowledge is rep-

resented where, and how each piece of knowledge is being

used at every moment. For this reason, AI systems are excel-

lent vehicles for conducting scientific, empirical in-

vestigations into the relationships between knowledge

representations, including the reasoning processes that use

them, and intelligent behavior.

In their 1976 Turing Award lecture, AI pioneers Newell and

Simon observed that, while computers do play a valuable role

as applied tools in people's lives, they also play a valuable role

for science and society as objects of empirical inquirydthings

that we design, build, and study in order to learn something

fundamental about the universe that we live in (Newell &

Simon, 1976, p. 114):

Each new program that is built is an experiment. It poses a

question to nature, and its behavior offers clues to an

answer. Neither machines nor programs are black boxes;

they are artifacts that have been designed, both hardware

and software, and we can open them up and look inside.

We can relate their structure to their behavior and draw

many lessons from a single experiment.

Of course, if we studied computers merely to learn more

about computers, then the activity would have only so much

appeal, but what computers allow us to do is to make empir-

ical study of the more general phenomenon of computation.

And, to the extent that we believe human intelligence to be at

least partly (if not wholly) computational in nature, what AI

systems allow us to do is to make empirical study of the

phenomenon of computation in the context of intelligent

behavior.

But what, exactly, can the study of knowledge represen-

tations and reasoning processes in AI systems tell us about

mental representations and cognitive processes in people?

While some AI systems are designed to realistically model

certain human cognitive or neural processes, not all of them

are (and in fact probablymost are not). All AI systems, though,

can still tell us something about human intelligence, because

each and every one is a small experiment that tests a specific

theory of knowledge representationdi.e., the extent to which

a particular set of knowledge representations and reasoning

processes will lead to a particular set of outcomes.

Thagard (1996) devised a very nice scheme for describing

how such computational theories of representation can be

evaluated along five different dimensions, with each contrib-

uting in its own way to the study of human cognition (reor-

dered and somewhat paraphrased here):

1. Psychological plausibility refers to the extent to which a

particular computational theory matches up with what

we know about human psychology, for instance in

terms of component processes (memory, attention, etc.)

or resulting behaviors (reaction times, errors, etc.).

https://doi.org/10.1016/j.cortex.2018.01.022
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2. Neurological plausibility refers to the extent to which a

particular computational theory matches up with what

we know about the human brain, for instance in terms

of functional divisions of the brain or connectionist

styles of processing.

3. Practical applicability refers to the extent to which a

particular computational theory supports useful tools

that benefit society, for instance in terms of assistive

technologies that help people learn or perform complex

tasks.

4. Representational power refers to the extent to which a

particular computational theory is capable of repre-

senting certain classes of knowledge and reasoning. To

take a simple example, a representational system con-

sisting only of integers can perfectly represent the

number 0 but can only imperfectly represent the num-

ber p. Evaluating the representational power of a

particular theory in essence asks the question, “What is

possible, under the terms of this theory?”

5. Computational power refers to the extent to which a

particular computational theory can support various

high-level forms of reasoning, such as planning,

learning, and decision making, within reasonable

computational bounds of memory and time. Evaluating

the computational power of a particular theory in

essence asks the question, “What is feasible, under the

terms of this theory?”

The first two dimensions from this list, psychological and

neurological plausibility, are perhaps what comemost readily

to mind when one thinks of using AI systems to study human

cognition. Certain classes of AI systems, e.g., computational

cognitive models, biologically-inspired cognitive architec-

tures, etc., are generally evaluated along these two di-

mensions. Many other classes of AI systems, e.g., self-driving

cars, intelligent tutors, applied machine learning systems,

etc., are evaluated primarily along the third dimension, for

their practical applicability. The last two dimensions, repre-

sentational and computational power, are sometimes less

explicit in discussions of AI research, though implicitly, the

questions of what is possible and what is feasible drive the

design and development of all AI systems.

Here, the contributions of AI systems for understanding

human visual mental imagery are discussed primarily in light

of these last two dimensions, representational and computa-

tional power. Certainly, investigating the degree to which

such systems exhibit psychological or neurological plausibil-

ity, and how such systems can be of practical benefit to soci-

ety, are also important, but these questions are not addressed

here. Another important factor in recent AI progress, espe-

cially in considerations of computational feasibility, has been

the rapid expansion of hardware capabilities, especially in

hardware optimized for performing many parallel computa-

tions. While continued hardware developments are likely to

be critical in this and many other areas of AI research, these

developments are not discussed here.

This article does aim to answer two fundamental questions

about visual-imagery-based AI systems. First, what might vi-

sual imagery look like in an AI system, in terms of the internal

representations used by the system to store and reason about
knowledge? Second, what kinds of intelligent tasks would an

imagery-based AI system be able to accomplish? The first

question is answered by providing a working definition of

what constitutes an imagery-based knowledge representa-

tion, and the second question is answered through a literature

survey of imagery-based AI systems that have been developed

over the past several decades of AI research, spanning task

domains of: 1) template-based visual search; 2) spatial and

diagrammatic reasoning; 3) geometric analogies and matrix

reasoning; 4) naive physics; and 5) commonsense reasoning

for question answering. This article concludes by discussing

three important open research questions in the study of

visual-imagery-based AI systemsdon evaluating system per-

formance, learning imagery operators, and representing ab-

stract conceptsdand their implications for understanding

human visual mental imagery.
2. A definition of visual-imagery-based AI

In humans, we use the term visual perception to refer to how

people see visual information coming in from the outside

world, and we use the term visual mental imagery to refer to

how people think using visual, image-like internal mental

representations. Importantly, visual mental imagery can take

place using inputs from visual perception, e.g., being asked to

look at and mentally manipulate a given image, or using in-

puts from othermodalities, e.g., creating amental image from

reading text, like: “Visualize a fuzzy yellow kitten.”

Unfortunately, in AI, terms like visual thinking, visual in-

telligence, and visual reasoning are often used interchange-

ably and confusingly to refer to various forms of visual

perception, visual-imagery-based reasoning, or other, non-

imagery-based forms of reasoning about visual knowledge.

Therefore, in order to clearly define the notion of visual-

imagery-based AI, we must first distinguish between the

format of an AI system's input representations and the format

of its internal representations.

Just as humans can receive perceptual inputs in many

different modalities, an AI system may receive input infor-

mation in any one (or more) of many different formats,

including visual images, sounds, word-like symbolic repre-

sentations, etc. Given the information contained in these in-

puts, the AI system may then convert this information

(through “perceptual processing”) into one or more different

formats to store and reason about this information internally,

e.g., as visual images, sounds, word-like symbolic represen-

tations, etc. A visual-imagery-based AI system is one that uses

visual images to store and reason about knowledge internally,

regardless of the format of the inputs to the system. Fig. 1

shows a simple example of this distinction.

While there have been many AI systems designed to pro-

cess visual inputs, as demonstrated by the field of computer

vision, the vast majority of AI systems designed for non-

perceptual tasks use internal representations that are propo-

sitional, and not visual. Propositional representations are

representations in which the format of the representation is

independent of its content (Nersessian, 2008). Examples of

many commonly used propositional representations include

logic, semantic networks, frames, scripts, production rules,

https://doi.org/10.1016/j.cortex.2018.01.022
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Fig. 1 e A simple illustration of four different types of AI

systems for answering the question, “Are these two

shapes the same or different?” (a) The inputs to the AI

system are visual images of the two shapes, which can

either be converted into internal verbal labels (top) or

retained internally as visual images (bottom). (b) The

inputs to the AI system are verbal labels of the two shapes,

which can either be retained internally as verbal labels

(top) or converted into internal visual images (bottom).

While all four of these types of systems could be classified

as AI systems for visual reasoning, only the two systems

illustrated by the bottom pathways would be classified as

visual-imagery-based AI systems.

c o r t e x 1 0 5 ( 2 0 1 8 ) 1 5 5e1 7 2158
etc. (Winston, 1992). Fig. 2 shows an illustration of the “pipe-

line” of intelligence in a typical propositional AI system.While

inputs might initially be received in the form of visual images

(or sounds, etc.), they are converted into propositional repre-

sentations before any reasoning takes place.

In contrast, consider adding a second information pathway

to this AI system diagram, as shown in Fig. 3. This second

pathway illustrates the system's use of visual images as part

of its internal knowledge representations. These internal vi-

sual images can come from visual inputs (taken as-is or con-

verted into different, perhaps simplified images) or from

inputs received in other modalities that undergo conversion

into images. Regardless of the input format, reasoning along

this pathway can then take place using these internal image

representations.

This dual-process pipeline of intelligence allows for the use

of both imagistic and propositional representations to solve a

given task, very much in the spirit of Paivio's dual-coding

theory of mental representations in human cognition

(Paivio, 2014). Visual-imagery-based AI systems are those that

fall into this dual-process category. Some of the AI systems
Fig. 2 e A “propositional pipeline” for intelligent behavior in an

inputs in the form of visual images, which are processed using

stored in various propositional formats. Reasoning takes place

representations, in order to produce new knowledge and action
reviewed in this paper use primarily visual-image-based rep-

resentations, though they might still keep some information

(like control knowledge about how to perform a task) repre-

sented propositionally. There are also several AI systems that

explicitly follow an integrated approach of using both visual

and propositional representations of task information, either

in sequential steps or in parallel.

Ultimately, one might expect to see AI systems that use a

multi-process approach to intelligence, with access to many

different modality-specific pathways of reasoning. In addi-

tion, these pathways need not stay separated, as they are

shown in Fig. 3, but instead can be intertwined, with

reasoning mechanisms that can flexibly compare and

combine many different types of internal knowledge repre-

sentations. Such flexibility to move between and combine

different kinds of representations is undoubtedly a core

aspect of human intelligence, and one that is likely to play an

increasingly important role in AI systems in the coming

decades.

2.1. Three criteria for visual-imagery-based
representations

In humans, visual mental imagery meets three criteria: 1) the

mental representations are image-like, in that they are rep-

resented in retinotopically organized brain areas; 2) they do

not match concurrent perceptual inputs; and 3) they play

some functional role in performing intelligent tasks (Kosslyn

et al., 1995, 1999; Slotnick et al., 2005). The same three

criteria can be adapted to define visual-imagery-based

knowledge representations in AI systems.

Criterion 1: Visual-imagery-based representations must

be 1) image-like, i.e., iconic, and 2) visual.

While this observation seems simple enough, the question

of how to define “image-like” requires some consideration.

What makes a knowledge representation image-like is that

the representation itself in some way resembles what it rep-

resents, i.e., there is some structural correspondence between

the format of the representation and its content. Represen-

tations that have this property of resemblance or structural

correspondence are often called iconic, as opposed to
AI system. In this simple illustration, the system receives

a perceptual module to extract information that is then

over these internal, propositional knowledge

s.

https://doi.org/10.1016/j.cortex.2018.01.022
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Fig. 3 e A “dual-process pipeline” for intelligent behavior in an AI system. In this simple illustration, the system receives

inputs in the form of visual images, which are processed using a perceptual module to extract information that is then

stored and reasoned about either as simplified visual images (top pathway) or in various propositional formats (bottom

pathway). Reasoning processes have access to both formats of knowledge representation, in order to produce new

knowledge and actions.
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propositional representations (as described above) that

demonstrate no such correspondence between format and

content (Nersessian, 2008).

For example, if we consider a picture of a cat, there are

spatial relationships in the picture that are the same as the

spatial relationships present in the actual cat. The iconic

representation does not, of course, preserve every single

property of the cat; as all representations are, it is still a

simplification and an abstraction (Davis, Shrobe, & Szolovits,

1993), but it is constrained to preserve at least some dimen-

sion of information about the cat in a structurally coherent

way. The word “cat,” on the other hand, is a propositional

representation because it preserves no information about the

cat in its structure; the relationship between the word and

what it represents is completely arbitrary.1

The iconic versus propositional distinction often goes by

other names.2 Iconic representations are sometimes called

analogical or depictive. Propositional representations are
1 Linguistic tokens are often, but not always, propositional
representations. The linguistic device of onomatopoeia describes
one class of words whose phonological structure resembles the
auditory properties of their referents. Pictographic or manual
alphabets can contain words whose visual structure resembles
the visual properties of their referents.

2 The modal versus amodal distinction is related but refers to a
slightly different property of a knowledge representation. A rep-
resentation is modal if it is instantiated in the same representa-
tional substrate that is used during perception (Nersessian, 2008).
For example, in humans, visual mental imagery would be clas-
sified as a modal representation because it is instantiated in
many of the same retinotopic brain regions that are used for
perception. Amodal representations do not have this property.
Classifying representations in an AI system as modal or amodal is
not totally straightforward, as what constitutes the system's
“perception” is also to some extent a matter of definition. This
paper focuses primarily on the iconic versus propositional
distinction, with this brief mention of modal versus amodal
included mainly as a point of clarification, as the terms have
considerable overlap in the literature on knowledge
representations.
sometimes called descriptive. The iconic property is some-

times defined in terms of homomorphism or isomorphism

between the representation and what is represented (Gurr,

1998), though many other kinds of definitions have also been

proposed (see Shimojima, 1999, for a review).

So far, we have defined an imagery-based representation

as one that is iconic, but iconic representations do not

necessarily have to be visual. In particular, iconic represen-

tations can exist in many different modalities, including

auditory, haptic, olfactory, etc., and in fact humans do have

access to mental imagery in all of these modalities (e.g.,

Reisberg, 2014; Stevenson& Case, 2005; Yoo et al., 2003). While

these modalities would all be highly interesting to study from

an AI perspective, this paper focuses just on imagery in the

visual modality, which can be defined as using knowledge

representations that are both iconic and that capture

appearance-related characteristics (visual and spatial infor-

mation) of the things that are being represented.

What does this definition look like, in practice? Iconic vi-

sual representations in an AI system are essentially those

that are array-based, in which the spatial layout of the array

preserves spatial information about what is being repre-

sented. Individual elements in the array can represent low-

level visual features such as intensity, color, or edgesdfor

example, pixel-based RGB images would fall into this cat-

egorydor individual elements in the array can correspond to

higher-level symbolic labelsdfor example, a simple diagram

like cat-dog-horse embodies a small set of spatial relation-

ships among the three objects. Such array-based representa-

tions can exist in one, two, three, or even four dimensions; an

uncompressed movie file is an example of a four-dimensional

iconic visual representation.

Criterion 2: Visual-imagery-based representations must

differ from concurrent perceptual inputs.

In addition to being iconic and visual, visual-imagery-

based representations cannot always match what is com-

ing in through the AI system's “perceptual module,” i.e.,

what is provided to the AI system as input, whether through

image sensors or manually fed into the system. This means

https://doi.org/10.1016/j.cortex.2018.01.022
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that the AI system must have some kind of array-based

buffer that can store visual information and retain it, even

if the visual inputs change or if the inputs are not visual in

the first place.

According to this rather basic definition, anyAI system that

stores any visual images at all would meet this second crite-

rion, and thus could be said to have a rudimentary form of

visual-imagery-based representations. To take a slightly more

stringent interpretation, we might say that control over

imagery-based representations cannot come from perception,

meaning that the AI system must have some set of internal

capabilities for instantiating and manipulating these repre-

sentations. While the specifics of such capabilities can vary

from one system to the next, that these capabilities exist can

be considered to be a requirement for visual-imagery-based

AI. Examples of commonly implemented capabilities, such

as rotation, translation, and composition, are described in

Section 2.2 on visual transformations.

Criterion 3: Visual-imagery-based representations must

play some functional role in performing intelligent tasks.

Finally, the third criterion requires that the imagery-based

representations serve some functional role in intelligent

behavior. In an AI system, thismeans that the representations

must contribute in some nontrivial way to solving the task

that the system is designed to address. In humans, some of

the most convincing evidence that visual mental imagery

serves a functional role, and is not just a byproduct of other

reasoning processes, comes from studies that interfere with a

person's mental imagery ability using transcranial magnetic

stimulation, or TMS (Kosslyn et al., 1999).

For an AI system, a simple thought experiment that gets

at the same issue is to ask, “If we delete the imagery-based

representations from this system, would its performance

suffer?” This heuristic is especially useful for thinking about

many AI systems that claim to model imagery-like pro-

cesses but use a core set of propositional representations to

drive their functionality; these systems often have a

“drawing” subroutine that is used only to visualize the

reasoning steps to the user, but the images themselves are

not actually used for reasoning. Such systems, even though

they might be capable of producing image-like representa-

tions, are not actually using these representations to solve

the task, and so should not qualify as being imagery-based

AI systems.

2.2. Visual transformations

In order to effectively use visual-imagery-based representa-

tions to solve a task, an AI system must have not only the

ability to create and maintain such representations, but also

some means of reasoning about the information contained

inside them. In general, systems of knowledge representation

are not well specified without the inclusion of a set of valid

inference mechanisms that can operate over the symbols in

that representation (Davis et al., 1993). For example, a

knowledge representation based on logic should include both

the specification of logical symbols as well as rules for

deduction.

Studies of visual mental imagery in humans have identi-

fied several key inference mechanisms, in the form of visual
transformations, that seem to be implicated many different

imagery-related task domains:

1. In-plane image translation or scanning (Finke & Pinker,

1982; Kosslyn, 1973; Kosslyn, Ball, & Reiser, 1978; Larsen

& Bundesen, 1998).

2. Image scaling or zooming, which corresponds to out-of-

plane translation (Bundesen & Larsen, 1975; Larsen,

McIlhagga, & Bundesen, 1999).

3. Image rotation (Cooper & Shepard, 1973; Zacks, 2008).

4. Image composition including intersection (Souli�eres

et al., 2011), union (Brandimonte, Hitch, & Bishop,

1992b; Finke, Pinker, & Farah, 1989), and subtraction

(Brandimonte, Hitch, & Bishop, 1992a, 1992b).

Most of the visual-imagery-based AI systems described in

this paper implement some or all of these transformations,

though the inclusion of particular transformations and the

details of their operation often differ from one AI system to

the next. Just as within the world of logic-based representa-

tions, there are many different frameworks that have

different rules for representation and inference, we need not

commit to a single formulation for all imagery-based repre-

sentations but instead can entertain a variety of different

approaches that collectively fall within the category of visual

imagery.

As a final comment on transformations, one term often

conflated with the use of visual transformations in imagery-

based representations is that of transformation invariance,

which is often discussed in the context of representations

used for visual classification. Transformation invariance re-

fers to the ability of a classifier to correctly classify inputs that

have been transformed in ways that should not affect the

class label. For example, a cat classifier that demonstrates

rotation invariance should correctly recognize cats that are

upside down, in addition to those that are right-side up. Other

commonly discussed types of transformation invariance in

visual classification include translation invariance, scale

invariance, lighting invariance, etc.

Note that transformation invariance can be achieved using

different mechanisms. For example, in order to successfully

classify an upside-down cat, a classifier might first apply a

rotation to the upside-down cat, and then use an upright-only

cat classifier on it. Alternatively, the classifier might have a

representation of cats that is intrinsically invariant to rota-

tions, for example by representing cats according to the

shapes of their ears, tails, and whiskers, regardless of the

orientation of these elements in the image. The latter

approach of creating “transformation-invariant representa-

tions,” i.e., designing the representation itself to be immune to

transformations, is a common approach in AI (Kazhdan,

Funkhouser, & Rusinkiewicz, 2003; Foldiak, 1991), and aligns

with findings from cognitive science that transformation-

invariant properties exist in human mental representations

(Booth & Rolls, 1998).

However, in humans, the two processes of 1) actively

applying transformations to mental representations and 2)

creating and using representations that have intrinsic

transformation-invariant properties, are dissociable (Farah &

Hammond, 1988) and show distinct patterns of neural

https://doi.org/10.1016/j.cortex.2018.01.022
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activation (Vanrie et al., 2002). Both processes likely play a

significant role in the robust visual classification performance

than humans are capable of (Tarr & Pinker, 1989; Vanrie,

Willems, & Wagemans, 2001).

Likewise, continued AI research both on applying visual

transformations and on creating transformation-invariant

representations will likely be valuable in understanding

many aspects of visual intelligence. This article focuses pri-

marily on discussions of visual transformations and not of

transformation-invariant representations, as the former are

more directly relevant to imagery-based representations and

reasoning.
3. A survey of visual-imagery-based AI
systems

This section presents a survey of AI systems that use visual-

imagery-based representations, organized by task domain:

template-based visual search (Section 3.1), spatial and dia-

grammatic reasoning (Section 3.2), geometric analogies and

matrix reasoning (Section 3.3), naive physics (Section 3.4), and

commonsense reasoning (Section 3.5). Each section first de-

scribes a few examples of propositional AI approaches that

have been developed to solve the given task, and then iden-

tifies AI systems that solve these tasks using an imagery-

based approach.

Imagery-based AI systems were located by searching the

literature using Google Scholar, and especially following

reference trails backwards from the later papers as well as

forwards from the earlier papers, using Google Scholar's “cited
by” function.Wheremultiple papers appear describing related

work from a single research group, one representative paper

has been selected for inclusion in this survey. The grouping of

AI systems into task domains was done post hoc. While every

effort wasmade to include all published visual-imagery-based

AI systems, undoubtedly many have been left out; this survey

at least gives a sampling of the AI research that has emerged

in this area over the past several decades.

3.1. Template-based visual search

Perhaps the simplest occurrence of visual imagery in AI sys-

tems is the use of image templates for visual search. In visual

search, a search target must be visually located within a

search environment. A very simple visual search task might

be to find an instance of the letter “x” somewhere on this page.

Amore complex visual search taskmight be to find something

in your office to use as an umbrella when it's raining (and

when, inevitably, you've left your actual umbrella at home).

During the process of visual search, an AI system can

represent the search target inmany differentways. In feature-

based search, the target is represented by one or more visual

features, e.g., “Find the object that is blue and round.”

In contrast to feature-based search, an AI system can

instead represent the search target using an image that cap-

tures aspects of the target's visual appearance. This image is

called a template, and the corresponding search process is

called template-based search. A template meets the criteria for

being a visual-imagery-based representation, as described in
Section 2.1, because it is an iconic visual representation of the

search target, it differs from the visual “perceptual” inputs

received by the AI system as it inspects the search environ-

ment, and it plays a functional role in task performance.

A very simple template-based visual search algorithm

might work as follows:

1. Take two images A and B as input, where image A (the

template) represents the search target, and image B

represents the search environment.

2. Slide the template image A across all possible positions

relative to image B. At each position, compute a mea-

sure of visual similarity between A and B, for example

by calculating a pixel-wise correlation between the two

images.

3. Choose the position in image B that yields the highest

similarity value to be the final output of the search

process.

While this simple algorithm is not particularly efficient or

robust to noise, the basic idea of template-based search has

been used in many successful AI applications, including recog-

nition of faces (Brunelli & Poggio, 1993), traffic signs (Gavrila,

1998), medical images (Hill et al., 1994), and more. Extensions

to the basic algorithm include more efficient ways to traverse

the search space, such as through the use of gaze or attention

models (Kunda & Ting, 2016; Palmer & Kunda, 2018; Rao et al.,

2002; Zelinsky, 2008) as well as more flexible ways to represent

the template and compute similarity, suchas through theuse of

deformable templates (Yuille, Hallinan, & Cohen, 1992).

A complete review of the literature on template-based vi-

sual search would be far too long to fit into this paper, and so

readers are referred instead to existing reviews (Brunelli, 2009;

Jain, Zhong, & Dubuisson-Jolly, 1998).

3.2. Spatial and diagrammatic reasoning

It might seem like an obvious idea to use visual-imagery-

based AI systems for spatial and diagrammatic reasoning

tasks. However, the majority of AI systems designed to solve

such tasks rely mainly on propositional knowledge repre-

sentations (As discussed in Section 2, the vocabulary used by

different research groups can be confusing; some groups refer

to a “visuospatial reasoning system” to mean an AI system

that reasons about visual inputs, regardless of its internal

format of representation, while others use the same term to

mean a system that reasons using internal visual represen-

tations, regardless of the format of the input task. Both might

qualify as spatial or diagrammatic reasoning systems, but

only the latterwould qualify as visual-imagery-basedAI under

the terms of the criteria outlined in Section 2.1.).

There have been many successful schemes devised for

representing visuospatial knowledge in propositional form,

for instance by propositionally encoding relations like is-left-

of (X, Y). Given such a knowledge representation scheme, an

AI system can draw upon this knowledge to make even very

complex inferences about a spatial or diagrammatic input

problem. For example, one very early effort proposed an AI

system that used propositional representations of visuospa-

tial information to generate geometry proofs (Gelernter, 1959).

https://doi.org/10.1016/j.cortex.2018.01.022
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In another early effort, Baylor (1972) built an AI system that

reasoned about spatial reasoning problems from a standard-

ized block visualization test. An example problem from this

test goes something like this: “Two sides of a 2 inch cube that

are next to each other are painted red, and the remaining

faces are painted green. The block is then cut into eight 1 inch

cubes. Howmany cubes have three unpainted faces?” Baylor's
AI system worked by first constructing an internal represen-

tation of the original block, then performing a “mental simu-

lation” to cut it, and finally inspecting the results to provide

the final answer. However, the internal block representations

stored by this AI system were not iconic; they were stored and

accessed as structured lists of vertices, and not as array-based

representations. So while this AI system was developed to

explore certain problem-solving aspects of “visual mental

imagery,” its representationswere not actually imagery-based

in a strict sense.

Continuing in this vein, there have been many successful

and interesting propositional approaches to spatial and dia-

grammatic reasoning demonstrated in AI research. Examples

include AI systems that perform qualitative spatial reasoning

(Cohn et al., 1997), understand general diagrams (Anderson &

McCartney, 2003), solve visual analogy problems (Croft &

Thagard, 2002; Davies, Goel, & Yaner, 2008), understand engi-

neering drawings (Yaner & Goel, 2008), reason about human-

drawn sketches (Forbus et al., 2011), perform path planning

(Goel et al., 1994), and many, many more (see Glasgow,

Narayanan, & Chandrasekaran, 1995 for a review of many of

the basic research thrusts in this area). Some approaches to

diagrammatic reasoning use graph-based knowledge repre-

sentations (e.g., Larkin and Simon, 1987); while graph-based

representations have a bit more internal structure than purely

propositional representations, they still do not strictlymeet our

criteria for imagery-based representations from Section 2.1, as

theyarenot array-based, though it couldperhapsbeargued that

they embody a variant of visual imagery.

There have been far fewer AI systems that perform vi-

suospatial or diagrammatic reasoning using strictly visual-

imagery-based representations. The common themes shared

by these systems are the use of array-based representations to

store iconic visual representations, and the application of vi-

sual transformations (e.g., translation, rotation, scaling, etc.)

to these array-based representations in order to solve prob-

lems from one or more task domains.

Kosslyn and Shwartz (1977) describe an AI system that can

construct, inspect, and transform simple images that are

stored as unit activations in a 2D matrix, as shown in Fig. 4a.

Visual transformations include translation, scaling, and

rotation. This system does not solve any particular task, per

se, but was developed to elucidate some basic computational

processes of visual imagery.

Mel (1990) describes an imagery-based AI system used in

motion planning for a robot arm, in which the robot first

learns mappings between its commanded servo outputs and

its own visual percepts of the movements of its arm, and then

plans new motions essentially by generating and inspecting

new internal images of how it wants its arm to move.

Glasgow and Papadias (1992) present one of the better

known works on imagery-based AI. They describe a

system that uses nested arrays to store imagery-based
representations at multiple levels of abstraction. At the

lowest level, 3D arrays serve as iconic representations of

shape and are used for problem solving in task domains like

3D molecular shape analysis, as shown in Fig. 4b.

Tabachneck-Schijf (1997) describe an AI system called

Computation with Multiple Representations (CaMeRa) that

uses both propositional and imagery-based representations to

interpret 2D line graphs in the domain of economics. The

CaMeRa system has a visual buffer that uses array-based

representations and transformations to “visually” trace

different imagined lines on a graph. For instance, in order to

detect where some point lies relative to the x-axis of the

graph, the system essentially visualizes a vertical line coming

down from the point and then observes where this line

crosses the x-axis, all within its visual buffer. Fig. 4c shows an

illustration of the visual buffer in the CaMeRa system.

Roy (2004) describes an imagery-basedmodule for a robotic

arm that enables the robot to reason about differing visual

perspectives of its own environment. As shown in Fig. 4d, the

robot generates a visual image that depicts the scene in front

of it (objects on a table) from the perspective of a human

sitting across the table; in this view, the robot is visualizing

not just how the objects look to the human but also its own

appearance.

Lathrop (2011) implemented a visual imagery extension to

the well known SOAR cognitive architecture. The resulting

system uses imagery-based representations to solve problems

in a simple block-stacking task domain as well as in a more

complex, multi-agent mapping and scouting task domain. In

both domains, the system visualizes the results of its actions

before it executes them, in order to help in planning and ac-

tion selection.

Other AI systems for spatial and diagrammatic reasoning

that include some visual-imagery-based representational

component include NEVILLE by Bertel et al. (2006), DRS by

Chandrasekaran et al. (2011), PRISM by Ragni and Knauff

(2013), and Casimir by Schultheis and Barkowsky (2011) and

Schultheis et al. (2014).

One kind of spatial reasoning task worth noting separately

is that of reasoning about maps. There are many ways for an

AI system to store map-like information, including as a set of

propositionally represented statements (e.g., Myers &

Konolige, 1994). Occupancy grids, now a very common

approach, were first introduced by Moravec and Elfes (1985) as

a way for mobile robots to aggregate and store information

about a new environment during exploration, as shown in

Fig. 5a. An occupancy grid is a 2D or 3D array-based data

structure that corresponds to a map of the environment; the

contents of each cell reflect the robot's estimate of what exists

at the corresponding location in the actual environment.

Many approaches in robotics, such as Kuipers' (2000) Spatial
Semantic Hierarchy, combine occupancy-grid-based and

propositional map representations.

Occupancy grids meet the requirements for an imagery-

based representation because they are iconic and often vi-

sual (though some occupancy grids may capture non-visual

information about the environment as well), they do not

correspond directly to any single visual percept received by

the robot, and they play a functional role in the robot's spatial

reasoning. In many occupancy-grid-based approaches, while
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Fig. 4 e Examples of internal, visual-imagery-based representations used by AI systems for spatial or diagrammatic

reasoning tasks. (a) Kosslyn and Shwartz (1977). (b) Glasgow and Papadias (1992). (c) Tabachneck-Schijf, Leonardo, and

Simon (1997). (d) Roy, Hsiao, and Mavridis (2004).

Fig. 5 e Examples of internal imagistic representations used by AI systems for mapping and path planning. (a) Moravec and

Elfes (1985). (b) Steels (1988). (c) Gardin and Meltzer (1989).
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the grid itself might be stored in an imagery-based way, the

inference operations performed over these representations

(like planning a shortest path between two points) are often

defined in terms of graph algorithms and not in terms of visual

transformations. However, there have been at least two at-

tempts to devise path planning algorithms that use visual

transformations over occupancy grids, as shown in Fig. 5b and

c (Gardin & Meltzer, 1989; Steels, 1988).

3.3. Geometric analogies and matrix reasoning

Geometric analogies are a class of problems often found on

human intelligence tests that follow the standard analogy

problem format of, “A is to B as C is to what?” In a geometric

analogy problem, A, B, and C are all images, and the correct

answer must be selected from a set of possible choices, as

shown on the left of Fig. 6. Matrix reasoning problems are

similar; a matrix of images is presentedwith onemissing, and

the correct missing image must be selected from a set of

possible choices, as shown on the right of Fig. 6.

Both of these types of problems have appeared on human

intelligence tests for decades. One such series of matrix

reasoning tests, the Raven's Progressive Matrices, are used as

standardized measures of fluid intelligence in numerous

clinical, scientific, and educational settings (Raven, Raven, &

Court, 1998), and in fact the Raven's tests have been identi-

fied in the field of psychometrics as being the best single-

format measure of general intelligence that exists (Snow,

Kyllonen, & Marshalek, 1984).

Evans (1968) demonstrated an AI system called ANALOGY

that solves geometric analogy problems using propositional
representations. ANALOGY contains a perceptual module that

takes line descriptions of a geometric analogy problem as

input and produces propositional list-based representations

of the problem as output, which are then used by ANALOGY

during the rest of the solution process. For example, the first

image A in the geometric analogy problem shown on the left

of Fig. 6 might be converted into something like:

((P1 P2) (INSIDE P2 P1) (P1 P2 ((1.2). (.0). (N.N.))))

This representation roughly translates to saying, “There

are two figures, P1 and P2. P2 is inside P1. P1 is 1.2 times larger

than P2, the relative rotation between P1 and P2 is .0�, and
there are no reflection relationships between P1 and P2.”

Many subsequent AI systems have used similar formats of

propositional representations to solve both geometric analogy

and matrix reasoning problems, investigating many inter-

esting aspects of this task domain includingmaintaining goals

and subgoals in working memory (Carpenter, Just, & Shell,

1990), logical reasoning techniques (Bringsjord &

Schimanski, 2003) techniques for analogical mapping be-

tween problem elements (Lovett et al., 2009), representing

hierarchical patterns in problem information (Strannegård,

Cirillo, & Str€om, 2013), and the induction of solution rules

(Rasmussen & Eliasmith, 2011).

However, these propositional AI systems do not explain a

different type of solution strategy that humans can and do

use, which is to recruit visual mental imagery instead of

relying purely on propositional (e.g., verbal or linguistic)

mental representations. There is strong evidence that

humans generally use a combination of imagery-based and
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found on the Raven's Progressive Matrices tests (Kunda, McGreggor, & Goel, 2013).
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propositional representations to solve these kinds of problems

(DeShon, Chan, & Weissbein, 1995; Prabhakaran et al., 1997).

(See Kunda et al., 2013 for a much more detailed review of the

literature on both human and AI problem-solving strategies

on the Raven's tests.)

Early theoretical work in AI suggested the kinds of algo-

rithms that might play a role in imagery-based solution stra-

tegies to matrix reasoning problems, though the algorithms

were not implemented in an actual system (Hunt, 1974). More

recently, Kunda et al. (2013) constructed an AI system called

the Affine-and-Set Transformation Induction (ASTI) system

that uses visual images to represent information from matrix

reasoning problems, and reasons about these images using

imagery operations such as translation, rotation, and

composition. The ASTI system meets our criteria for a visual-

imagery-based AI system because 1) it uses iconic visual rep-

resentations of problem information, 2) these images differ

from perceptual inputs because they are translated, rotated,

and otherwise altered to form new images that are not con-

tained anywhere in the original problem, and 3) the images

play a functional role in the system's problem-solving

procedures.

To solve a matrix reasoning problem, the ASTI system

follows a problem-solving approach called constructive

matching (Bethell-Fox, Lohman, & Snow, 1984). First, the ASTI

system tries out a series of imagery operators on different

images from the original problem matrix until it finds an

operator that can “visually simulate” the change that occurs

across any single row or column of the matrix. Then, it uses

this operator to construct a new image that fits in the blank

space of the matrix. Finally, it compares this constructed

answer to the list of answer choices in order to select themost

visually similar answer choice.

The ASTI system was tested against the Standard version

of the Raven's Progressive Matrices series of tests, which is of

medium difficulty and is intended for children and adults of

average ability. Out of 60 total problems on the test, the ASTI

system answered 50 correctly, which is around the level of

performance expected for typically developing 16e17-year-

olds (Kunda, 2013). This result was the first concrete proof that
it is possible (from a computational perspective) to get a score

of 50 using a purely imagery-based approach. Prior to this

finding, a common belief about the Raven's tests was that

imagery-based reasoning could only solve the very easiest

problems, and that solving the harder problems required

switching to a propositional strategy (Hunt, 1974; Kirby &

Lawson, 1983). The ASTI result also lends weight to findings

that certain individuals on the autism spectrum appear to rely

more heavily on visual brain regions when solving Raven's
problems than do neurotypical individuals, with no decrease

in accuracy (Souli�eres et al., 2009).

A related, parallel AI effort by McGreggor et al. (2014)

investigated imagery-based reasoning on the Raven's test

using fractal image representations, which involve using

imagery-like operations to construct representations of prob-

lem information that capture similarity and self-similarity at

multiple spatial scales across different sets of input images.

These fractal image representations were used as part of an AI

system that solved Raven's test problems (McGreggor & Goel,

2014) as well as visual odd-one-out problems (McGreggor &

Goel, 2011), and the method was also later applied to

analogy-based task transfer in robotics (Fitzgerald et al., 2015).

3.4. Naive physics

How do intelligent systems (human or AI) represent and

reason about the physical nature of the world? Clearly, one

does not need to know the correct Newtonian physics equa-

tions in order to predict that a ball will roll down a hill. Early

work in AI proposed the use of qualitative representations of

physics knowledge to support fast, approximate “naive

physics” reasoning. For example, instead of representing the

exact volume of liquid in a glass of water, we might think of it

as being completely full, mostly full, mostly empty, etc. These

approximations are “close enough” to generate successful

answers to many questions about what will happen to this

glass water in different situations. Many AI systems have

adopted such propositional forms of representation to reason

about qualitative physics concepts (De Kleer & Brown, 1984;

Forbus, 1984).
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While these AI systems were intended primarily as models

of human reasoning, other areas of computer science devel-

oped techniques of physics-based modeling, i.e., using quan-

titative propositional representations to simulate physical

situations, using physics equations as the core form of

knowledge in the computer system. Some recent work blends

these two by proposing simulation-based models of naive

physics reasoning (Johnston & Williams, 2009), including

proposals that perhaps humans use some form of simulation-

based reasoning as well as qualitative reasoning, though the

format of the core physics knowledge in humans is still an

open question (Hamrick, Battaglia, & Tenenbaum, 2011).

A third view is that naive physics reasoning in humans

might be based on internal simulations that are not mathe-

matically defined but rather visually defined, i.e., using visual

mental imagery. In line with this view, Funt (1980) presented

an AI system called WHISPER that used interactions between

neighbors in a connected network of units to simulate basic

physical processes in a block world domain, such as object

stability and toppling, as shown in Fig. 7a. Gardin and Meltzer

(1989) developed an AI system that uses an imagery-based

representation formed of connected units that simulates

flexible objects like rods of varying stiffness, strings, and liq-

uids by changing parameters on the unit connections, as

shown in Fig. 7b. Shrager (1990) described an AI system that

uses a combination of imagery-based and other representa-

tions to reason about problems in a gas laser physics domain.

Narayanan and Chandrasekaran (1991) described an AI sys-

tem that also uses a combination of imagery-based and other

representations to reason about blocks-world problems, as

shown in Fig. 7c. Schwartz (Schwartz & Black, 1996) described

an AI system that models unit forces in array-based repre-

sentations in order to simulate the rotations of meshed gears,

as shown in Fig. 7d.

3.5. Commonsense reasoning for question answering

In AI, commonsense reasoning capabilities are held to be

critical to virtually every area of intelligent behavior, including

question answering, story understanding, planning, andmore

(Davis, 2014). However, commonsense reasoning remains a

difficult challenge for the field. For example, answering

certain questionsde.g., “Could a crocodile run a

steeplechase?”dis easy for many people but difficult for most

AI systems, requiring not only language processing but also

everyday background knowledge that is hard to encode

(Levesque, 2014). Answering these kinds of “commonsense”
Fig. 7 e Examples of visual-imagery-based representations used

(a) Funt (1980). (b) Gardin & Meltzer (1989). (c) Narayanan & Cha
questions has been proposed as an alternative to the Turing

test as a way to characterize the extent to which a machine

demonstrates intelligence (Levesque, Davis, & Morgenstern,

2011).

Over the past few decades, there have been several

massive projects undertaken to construct AI systems that

perform commonsense reasoning using propositional repre-

sentations of background knowledge. Much of the effort in

these projects has gone into essentially writing down huge

amounts of commonsense knowledge in specialized, inter-

connected, machine-interpretable formats, as well as into

developing scalable search and reasoning algorithms that can

pull this knowledge together to answer specific questions that

are presented to the system.

Lenat's CYC system (short for “encyclopedia”), begun in

1984, recruited teams of people to manually enter knowledge

statements into the CYC database. Another system called

Open Mind Common Sense was an early adopter of the

crowdsourcing philosophy, recruiting volunteers over the

Internet to contribute knowledge statements (Singh et al.,

2002). More recently, there have been many AI efforts aimed

at automatically extracting structured knowledge from exist-

ing Internet sources such as Wikipedia (Ponzetto & Strube,

2007). IBM's Watson system, while not focused specifically

on commonsense reasoning per se, defeated reigning human

champions on the game show Jeopardy! by drawing from “a

wide range of encyclopedias, dictionaries, thesauri, newswire

articles, literary works, and so on” (Ferrucci et al., 2010, p. 69).

All of these approaches use propositional representations

of knowledge to process incoming language, reason about the

given information, and answer questions aboutwhat has been

described. However, another way to approach this kind of task

could be to create a visual image of the situation and then use

visual imagery operators to manipulate and query the image

in order to obtain the desired information. For example, in

response to the crocodile-steeplechase question, one can

visually imagine a crocodile running a steeplechase and then

evaluate how reasonable the scene looks by “inspecting” the

generated visual mental image. Perlis (2016) emphasizes the

importance of building AI systems that incorporate this

“envisioning” approach to planning and understanding.

Winston conceptualizes this type of reasoning as a capability

that combines both imagery and storytelling, often presenting

his own table-saw example as a thought experiment

(Winston, 2012, p. 25):

As a friend helped me install a table saw, he said, “You

should never wear gloves when you use this saw.” At first, I
by AI systems for reasoning about naive physics concepts.

ndrasekaran (1991). (d) Schwartz & Black (1996).
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wasmystified, then it occurred to me that a glove could get

caught in the blade. No further explanation was needed

because I could imagine what would follow. It did not feel

like any sort of formal reasoning. It did not feel like I would

have to have the message reinforced before it sank in. It

feels like I witnessed a grisly event of a sort no one had ever

told me. I learned from a one-shot surrogate experience; I

toldmyself a story about something I had never witnessed,

and I will have the common sense to never wear gloves

when I operate a table saw.

There have been numerous AI systems developed over the

years that aim to answer commonsense-type questions using

visual-imagery-based representations. Not surprisingly, early

work in this area focused on using imagery-based represen-

tations to represent and answer questions specifically about

spatial relationships in natural language sentences. In one of

the earliest published papers on this topic, Waltz and Boggess

(1979) describe an AI system that constructs 3D descriptions of

objects and their relationships, and then uses these 3D de-

scriptions to answer questions about the scene. However, this

system stores objects internally as sets of numerical co-

ordinates, and the “image” is accessed only implicitly through

calculations about these coordinate values, and so the system

does not strictly meet the criteria for imagery-based repre-

sentations laid out in Section 2.1.

Many of the other AI systems described in this section

similarly use coordinate-based descriptions of scene models.

For example, ifa 3Dmodelingengine isused(as isoftenthecase)

to generate scenedescriptions, the internal representationused

by theAI system is thenative representation of the 3Dmodeling

engine,which isoftencoordinate-based.These systems fall into

somewhat of a gray area regarding imagery-based AI; the spirit

of the approach is certainly imagery-like, but the internal rep-

resentations used by these systems do not always strictlymeet

the criteria for visual-imagery-based representations described

in Section 2.1. Regardless, this general area of research is

certainly an important one for the continued development of

imagery-based AI systems, and so this section includes AI sys-

tems that are either strictly imagery-based or at least imagery-

based in spirit. Certainly all of these AI systems can produce

new images as outputs (Criterion 1), and these images do not

match any perceptual inputs of these systems (Criterion 2), as

shown in Fig. 8; all that remains is for the system to have some

reasoning procedure that operates directly on these images to

solve a particular problem (Criterion 3).

A typical AI system in this category is often set up as a

question-answering system. The input to the system is a text

description of some situation or scene, along with a question

about the scene. The system should be able to output the

correct answer to the question. This kind of system is often

designed to function using three distinct modules:

1. A natural languagemodule converts the input text (both

the scene description and the question) into structured,

propositional descriptions, for example in the form of

logical statements.

2. An imagery module converts the structured de-

scriptions of the scene into a 2D or 3D scene image that

depicts the given scene information.
3. Based on the contents of the question, a reasoning

module inspects the scene image to obtain whatever

information is necessary to answer the question.

The first part of this process falls into the category of nat-

ural language processing (NLP), a very broad area of AI. For AI

systems that aim to create a visual image from given lan-

guage, the language processing step is often specifically

geared towards extracting spatial and temporal relationships.

The second part of this process, constructing an imagined

scene, requires that the system already encodes background

knowledge about what different scene objects and relation-

ships mean. Many systems rely on a predefined knowledge

database that contains default object models (e.g., a 3D model

of a typical table) used to construct the scene. One of themain

technical challenges that such systems must solve is how to

reconcile the ambiguity present in a textual scene description

with the specificity of a concrete scene image; solutions

include generating multiple possible scene images (Ioerger,

1994) or probability distributions over where objects might

be located (Schirra & Stopp, 1993). Some systems attempt to

address the research question of where this knowledge

database comes from, i.e., how this knowledge can be learned

from experience (Chang, Savva, & Manning, 2014; Schirra &

Stopp, 1993). Fig. 8 shows snapshots from the imagined

scenes of several different AI systems that take input lan-

guage and convert the given information into new 2D or 3D

scene images.

This kind of scene construction by an AI system is some-

times called “text-to-scene” conversion. In this literature, the

generated scenes are sometimes intended to be for human

consumption, for instance as automated story illustration

systems. Such systems may end with the second part of the

process, scene generation, and not perform any subsequent

reasoning over the generated image. However, these systems

do address many central research questions relevant to gen-

eral imagery-based AI, such as how visual background

knowledge can be encoded, how linguistic ambiguities can be

resolved, etc.

The third part of the process involves reasoning about the

imagined image, often to answer a question that was received

as part of the system's inputs. Here, the concrete nature of the

imagined image (which poses such challenges in image cre-

ation) is what gives a great advantage for reasoning, because

there is much information about the scene that was not

explicitly described in the initial text description but is now

available for immediate querying by the reasoning module.

To take a simple example, suppose we have two state-

ments, “The fork is left of the plate,” and, ”The plate is left of

the knife.” Is the fork left of the knife? For an AI system storing

the initial statements in propositional form, even though the

information is sufficient to answer the question, the answer is

not immediately available; some type of inferencemust chain

together the two statements in order to compare the two ob-

jects. However, for an AI system storing the initial statements

as a concrete image, the information about the relative posi-

tion of the fork and knife, though never explicitly stated in the

input text, is available for immediate inspection. While in this

simple example, there might not be much computational

difference between the two approaches, consider what

https://doi.org/10.1016/j.cortex.2018.01.022
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Fig. 8 e Examples of visual-image-based scenes constructed by AI systems based on text-only inputs. (a) Giunchiglia et al.

(1992). (b) Schirra & Stopp (1993). (c) Ioerger (1994). (d) Bender (2001). (e) Coyne & Sproat (2001). (f) Durupınar,

Kahramankaptan, & Cicekli (2004). (g) Seversky & Yin (2006). (h) Johansson et al. (2005). (i) Finlayson & Winston (2007). (j)

Chang et al. (2014). (k) Bigelow et al. (2015). (l) Lin & Parikh (2015).

c o r t e x 1 0 5 ( 2 0 1 8 ) 1 5 5e1 7 2 167
happens if we are chaining together a dozen object state-

ments, or a hundred, or a million. While propositional repre-

sentations certainly have other advantages, this particular

type of gain in reasoning efficiency for imagery-based repre-

sentations has been acknowledged in AI (Larkin & Simon,

1987).
4. Looking ahead

While there has been much progress made in visual-imagery-

based AI systems over the past several decades, as evidenced

by the survey presented in Section 3, there is still much to be

learned about the computational underpinnings of visual

imagery and their role in intelligence. What follows is a brief

discussion of three important open research questions in the

study of visual-imagery-based AI systems.

How can imagery-based AI systems be evaluated? For

many task domains, it is easy to set up objective tests to

evaluate how well an AI system is performing. Natural lan-

guage understanding can be tested by having conversational

interactions with an AI system, or by having it process a piece

of text and respond to queries afterwards. Visual perception

can be tested by showing the AI system images or videos, and

then having it identify what it has seen. How does one test the

visual imagery capabilities of an AI system? Most of the

imagery-based AI systems discussed in Section 3 were

designed to solve problems from a particular task domain.

Some published studies describe quantitative results obtained

from testing the AI system against a comprehensive set of
such problems; other studies describe only a few results from

testing the AI system against representative example prob-

lems, and still others present a proof-of-concept of the AI

system with little to no testing.

While there has been an impressive breadth of research

across different task domains, as evidenced by the survey in

Section 3, there has not yet been the kind of decades-long,

sustained research focus that has yielded deep AI insights in

other areas, such as, for example, in computer vision, which

has involved many hundreds of research groups around the

world studying closely related problems in visual recognition,

segmentation, etc. One issue is that visual mental imagery in

humans is itself difficult to study, with no standardized tests

of imagery ability in wide use. Also, many imagery-related

tasks in people are either too easy (e.g., mental rotation) or

too difficult (e.g., imagining a table saw) to readily tackle as an

AI research project.

Following the example of computer vision, standardized

benchmarks of the right difficulty level can help generate a

criticalmass of research in a particular task domain, though of

course benchmarks present their own set of issues related to

evaluation. Whether through benchmarks or perhaps more

systematic designs of individual research studies, there is

significant need and opportunity for advancing evaluation

methods for imagery-based AI systems.

How are imagery operators learned? In humans, the

reasoning operators used during visual mental imagery (vi-

sual transformations like mental rotation, scaling, etc.) are

believed to be learned from visuomotor experience, e.g.,

watching the movement of physical objects in the real world

https://doi.org/10.1016/j.cortex.2018.01.022
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(Shepard, 1984). However, we still have no clear computa-

tional explanation for how this type of learning unfolds. Mel

(1986) proposed an ingenious method for the supervised

learning of visual transformations like rotation from image

sequences; in this approach, each transformation operator is

represented not as a single image function but instead as a set

of weights in a connectionist network, i.e., a representation

that is both distributed and continuous. Then, weights in this

network are updated according to a standard perceptron up-

date rule. Mel implemented an AI system called VIPS that

successfully learned simple operators from simulated wire-

frame image sequences depicting the given transformations.

Memisevic and Hinton (2007, 2010) demonstrate an approach

that uses more complex connectionist networks to learn

several different transformations in an unsupervised fashion

from large video databases. Seepanomwan et al. (2013) pro-

pose a robot architecture that successfully combines visual

and motor perceptual information to learn mental rotation by

rotating objects and watching how their appearance changes

in a simulated environment.

While many AI systems implement visual transformations

as distinct operations comprising a finite “imagery operator”

library (e.g., Kunda et al. 2013), another possibility is that

continuous operators could be represented in terms of

distinct, infinitesimal basis functions that can be combined in

arbitrary ways (Goebel, 1990). We still do not know exactly

how humans represent the transformations used in visual

mental imagery, though there is evidence that operators like

mental rotation are sometimes easier for people to perform

along primary axes than off-axis (Just & Carpenter, 1985).

Recent AI advances in deep learning, if applied to the problem

of learning imagery operators, may help to identify effective

forms of low-level representations that facilitate this partic-

ular kind of learning (Bengio, Courville, & Vincent, 2013).

The question of how imagery-related reasoning skills are

learned is crucial not only for research in AI but also for

human education; visuospatial ability is increasingly viewed

as a key contributor to math learning (Cheng & Mix, 2014;

National Research Council, 2009) and to success in many

STEM fields (Wai, Lubinski, & Benbow, 2009). Moreover, recent

research suggests that many different visuospatial abilities

can be improved with training (Uttal et al., 2013). While it is

generally agreed that people learn imagery-based reasoning

skills through perceptual experience, it is less clearwhat types

of experience are most valuable, and why, and how to design

training interventions that precisely target these learning

experiences. AI systems are already used in many different

education domains to improve student learning outcomes,

and so perhaps imagery-based AI systems could serve as tools

for improving math and STEM learning by helping pinpoint

how best to boost a person's imagery-related reasoning skills.

How can imagery-based representations be used to reason

about abstract concepts? Most of the imagery-based AI sys-

tems listed in Section 3 use their imagery-based representa-

tions to reason about information that is essentially visual.

Even for systems that have non-visual inputs, such as the

commonsense reasoning systems described in Section 3.5, the

knowledge that is being represented is generally about things

like spatial relationships, the visual appearance of semantic

categories, etc. However, in humans, many interesting
examples of visual mental imagery involve reasoning about

information that is inherently abstract and non-visual. For

example, both Albert Einstein and Richard Feynman observed

that they often thought about abstract physics concepts first

using visual mental images, and only afterwards using equa-

tions (Gleick, 1992; Feist, 2008). As Feynman once described to

an interviewer (Gleick, 1992, p. 244):

What I am really trying to do is bring birth to clarity, which

is really a half-assedly thought-out pictorial semi-vision

thing. I would see the jiggle-jiggle-jiggle or the wiggle of

the path. Even now when I talk about the influence func-

tional, I see the coupling and I take this turnelike as if there

was a big bag of stuffeand try to collect it away and to push

it. It's all visual. It's hard to explain.

Part of what humans do so marvelously is take cognitive

processes that may have originally evolved for one purpose

(e.g., using visual mental imagery to reason about space) and

use them for something else entirely (e.g., using visual

mental imagery to reason about abstract mathematical con-

cepts)da sort of metaphorical thinking (Lakoff & Johnson,

2008). Can imagery-based AI systems ever tackle the deep

thoughts of scientists like Feynman and Einstein? Polland

(1996) compiled an extensive list of mental imagery reports

from biographical and autobiographical accounts of 38

famous scientists, artists, musicians, and writers, and

analyzed what role mental imagery seemed to play in the

creative problem-solving processes of each subject. Perhaps

someday, imagery-based AI systems could help to explain the

computational mechanisms behind these kinds of advanced,

open-ended, and creative problem-solving episodes by some

of our greatest thinkers.
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